A robust high-speed sliding mode control of permanent magnet synchronous motor based on simplified hysteresis current comparison

نویسندگان

چکیده

A robust high-speed sliding mode control (SMC) of three phase permanent magnet synchronous motor (PMSM) is presented. The SMC served for inner speed while a simplified hysteresis current (HCC) scheme was used in the outer to generate gating signals inverter switches. present research leverages on ability directly access system error which it attempts driving zero by cancelling modelling uncertainties and disturbances. Performance comparison done model an existing having classical PI controller. With initial positive command 200 rpm at 5 Nm constant loading, rotor with neatly settled reference 0.085 seconds without overshoot controller 0.217 after overshoot. This translates 155.3% enhancement. Similar superior performance also observed during recovering from sudden reversal. While recovered -200 0.369 seconds, 0.482 seconds. From results, can be seen that demonstared superiority over conventioanl complex drives systems.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DSP-Based Sensorless Speed Control of a Permanent Magnet Synchronous Motor using Sliding Mode Current Observer

Received Jan 30, 2014 Revised Mar 2, 2014 Accepted Mar 18, 2014 In this paper, experimental results of 3-phase permanent magnet synchronous motor (PMSM) sensorless speed control are presented. To estimate the rotor position, a sliding mode current observer (SMCO) was implemented. This observer estimates the back emfs of the motor in the stationary reference frame using only the measured voltage...

متن کامل

Robust Optimal Speed Tracking Control of a Current Sensorless Synchronous Reluctance Motor Drive using a New Sliding Mode Controller

This paper describes the robust optimal incremental motion control of a current  sensorless synchronous reluctance motor (SynRM), which can be specified by any desired speed profile. The control scheme is a combination of conventional linear quadratic (LQ) feedback control method and sliding mode control (SMC). A novel sliding switching surface is employed first, that makes the states of the Sy...

متن کامل

Design and Implementaion of Interior Permanent Magnet Synchronous Motor (IPMSM) Control based on Integral Terminal Sliding Mode Technique

Permanent Magnet Synchronous Motor because of high energy storage capability is very important in electrical drive industry. Speed control of this motor suffers from parameter variations such as variable inductance. In this paper, The Integral-Terminal Sliding Mode Control (ITSMC) method is used to control the speed (torque) along with d-axis current control. This method is like to classic slid...

متن کامل

Permanent Magnet DC Motor Sliding Mode Control System

In this paper a sliding mode controller (SMC) is designed for a permanent magnet direct current (PMDC) motor to enhance the motor performance in the presence of unwanted uncertainties. Both the electrical and mechanical signals are used as the inputs to the SMC. The complete motor control system is simulated on a personal computer with different design parameters and desirable system performanc...

متن کامل

Speed Control of Permanent Magnet Synchronous Motor by Antiwindup PI Controller and Comparison with Fuzzy Controller

In this paper, the driver with antiwindup and fuzzy high-performance and robust PI controller has been suggested for Permanent Magnet Synchronous Motor (PMSM). This controller is suggested for the design of the robust driver for three phase PMSM and the cost reduction of its control system. It’s useful for the industrial application and automation and ultimately speed control and the improvemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Power Electronics and Drive Systems

سال: 2021

ISSN: ['2722-2578', '2722-256X']

DOI: https://doi.org/10.11591/ijpeds.v12.i1.pp1-9